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Choosing a Polytomous IRT Model using Bayesian Model Selection Methods

Abstract

Model selection is the process by which a specific statistical model is chosen to

represent the data. In order to get the benefits of item response theory (IRT), it

is important to choose appropriate model which fit the data well. In this study,

four model selection methods based on Bayesian estimation process will be com-

pared in terms of their relative performances in choosing the best model to analyze

Likert-type data. Among lots of polytomous IRT models already suggested, the

rating scale model (RSM; Andrich, 1978), the partial credit model (PCM; Masters,

1982), the generalized partial credit model (GPCM; Muraki, 1992), and the graded

response model (GRM; Samejima, 1969) are used to compare the utility of the four

model selection methods. Results indicate that model selection was dependent to

some extent on the particular conditions simulated.

Index Terms: Item Response Theory, Model Selection, Polytomous IRT Model

2



1 Introduction

IRT is composed of a family of mathematical models designed to describe the

relationship between examinee ability and performance on test items. Selection of

an appropriate IRT model is critical if the benefits of IRT for applications such as

test development, item banking, differential item functioning (DIF), computerized

adaptive testing (CAT), and test equating are to be attained. Although there now

exists an extensive IRT literature, relatively little has focused in methodology for

determining the appropriateness of particular IRT models, and particular model

comparison criteria. This has had the unfortunate consequence of many simply

choosing a model with which they are familiar or for which software is available

(Bolt, 2002; Embretson & Reise, 2000).

Because appropriate use of IRT models frequently depends heavily on model fit,

the model selection process should be an important part in every application of IRT.

If the wrong IRT model is selected for test data, the consequences can be severe

in some cases. Yen (1981) explained the possible problems that could be caused

by the use of an inappropriate model for dichotomous item response data. Perhaps

most critically, the hallmark feature of IRT, parameter invariance, no longer applies

(Shepard, Camilli & Williams, 1984; Bolt, 2002; Rupp & Zumbo, 2004).

Even beyond the practical implication of choosing an appropriate model, the

model selection process can also help clarify the nature of the processes underlying

test item responses. Many of the currently proposed IRT models differ according

to how they characterize the nature of ability (e.g., dimensionality) and how they

characterize the cognition mechanisms by which item scores are achieved (e.g., par-

tial credit scoring versus graded response scoring). Because such insights are often a

part of test validation, the methods studied in this dissertation may also assist IRT
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researchers/practitioners in the process of determining whether their tests measure

what they are designed to measure.

What is the best model? The best model can be defined in different ways

depending on the goal of model selection. When the goal of model selection is only

to find the model that provides the maximum fit to a given data set, a model with

the smallest root mean squared deviation (RMSD) between the observed and the

expected responses may be the best model. But, as Pitt, Kim, and Myung (2003)

have noted, the goal of model selection can also be to identify the one model, from

a set of competing models, that best captures the regularities or trends underlying

the cognitive process of interest.

A more complicated model than appropriate violates the fundamental scientific

principle of parsimony, which requires that one should choose the simplest of all the

models that explain the data well. In the context of IRT, for example, if the only

feature of interest were item difficulty, a model (such as the two parameter logistic

model: 2PLM) which also adds an account of item discrimination might actually

confuse understanding the item characteristic of interest. In brief, we want to choose

the model that can explain all of the important features of the actual data without

adding so much complexity that is unnecessary.

In this study, four model selection methods based on Bayesian estimation process

are used in comparing IRT models. They are the deviance information crite-

rion (DIC: Spiegelhalter, Best, & Carlin, 1998), the cross validation log-likelihoods

(CVLLs) based on the concept of pseudo-Bayes Factor (PsBF: Geisser & Eddy,

1979; Gelfand & Dey, 1994; Bolt, Cohen & Wollack, 2001), and two information-

theoretic methods which are Akaike’s information criterion (AIC: Akaike, 1974) and

Schwarz’s Bayesian information criterion (BIC: Schwarz, 1978). All of them are

known to be able to consider a model’s complexity as well as its goodness-of-fit
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(GOF: see Akaike, 1974; Forster, 1999; Kadane & Lazar, 2004; Massaro, Cohen,

Campbell, & Rodriguez, 2001; Pitt, Kim, & Myung, 2003; Schwarz, 1978).

2 Polytomous IRT models

When items in a test are scored as one of more than two response categories like

Likert-scale, polytomous IRT models are required. In this study, we deal with four

commonly used polytomous IRT models: the rating scale model (RSM; Andrich,

1978), the partial credit model (PCM; Masters, 1982), the generalized partial credit

model (GPCM; Muraki, 1992), and the graded response model (GRM; Samejima,

1969). The first three models, the RSM, PCM, and GPCM, are hierarchically re-

lated, and represent an extension of “Binary Models” such as 2PLM in the Thissen

and Steinberg (1986) taxonomy, referred to as “Divided-By-Total Models”.

The most general of these three models is the GPCM. The probability that an

examinee j scores in category x on item i is modeled by the GPCM as

P (Xij = x|θj, αi, βi, τki) =
exp

∑x

k=0 αi[θj − (βi − τki)]∑m

y=0 exp
∑y

k=0 αi[θj − (βi − τki)]
, (1)

where j = 1, . . . , N , i = 1, . . . , T , and x = 0, . . . ,m. In this model, αi represents

the discrimination of item i, βi represents the difficulty of item i, and τk represents

a location parameter for category k of item i. We set τ0i = 0 and exp
∑0

k=0 αi[θj −

(βi − τk)] = 1 in Equation (1) for identification.

If the αi is fixed at 1 across items, Equation (1) reduces to the PCM. In addition,

if τ values are the same for each category, respectively, across items, Equation (1)

further reduces to the RSM. Consequently, the RSM, PCM, and GPCM are nested

models. Figure 1 shows example category response curves of a polytomous item

with five categories (0, 1, 2, 3, and 4) under the GPCM. βi − τ1 through βi − τ4

indicate the spots in which the category response curves intersect on the latent-trait
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scale.
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Figure 1: Category response curves for the example item under the GPCM: α = 1,
β = 0, τ1 = 1.5, τ2 = 1, τ3 = 0, and τ4 = −2.5

The GRM, however, is not a “Divided-By-Total” Model. Instead, the GRM is

a representative model of another extension (“Difference Models”) of Thissen and

Steinberg’s taxonomy. It can be viewed as a generalization of the 2PLM that uses the

2PL function to model boundary characteristic curves, namely curves that represent

the probability of a response higher than a given category x. It is convenient in the

model to convert the x = 0, . . . ,m category scores into x = 1, . . . ,m + 1 categories.

If we use P ∗

ijx to denote the boundary probability for examinee j to have a category

score larger than x on item i; then the boundary curve is given by

P ∗

ijx =
exp[αi(θj − βxi)]

1 + exp[αi(θj − βxi)]
. (2)

Figure 2 shows example boundary characteristic curves for a five-category item (1,

2, 3, 4, and 5) under the GRM. Note that an item with m + 1 categories results in
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m boundary curves.
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Figure 2: Boundary characteristic curves for the example item under the GRM

To determine the probability of a particular item score, the difference between

adjacent categories is used. Thus, in the GRM, the probability that examinee j

achieves category score x at item i is given by

Pijx = P ∗

ij(x−1) − P ∗

ijx (3)

where x = 1, . . . ,m + 1, P ∗

ij0 = 1, and P ∗

ij(m+1) = 0.

As an example, the values of Pij1 through Pij5 when the ability of examinee j

is θ = 0.4 is illustrated in Figure 2 as the length of vertical line divided by each

boundary characteristic curves at the θ = 0.4.

The GRM is distinguished from the GPCM and its nested models (the RSM,

and PCM) by the fact that it requires a two-step process to compute the conditional

probability for an examinee responding in a particular category. As Myung, Pitt,

Zhang, and Balasubramanian (2001) explained, there are at least two independent
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dimensions of model complexity: the number of free parameters of a model and its

functional form (see y = θx and y = xθ). Even though the GRM and GPCM need

the same number of parameters for fitting each item, it is not easy to say that they

have the same model complexity because the functions of the models are so different.

Furthermore, the scoring process supposed by the GRM (grade response scoring) is

conceptually different from that supposed by the PCM and GPCM (partial credit

scoring). The former uses 2PLMs to compute boundary curves for each item, so

each curve represents the probability of an examinee’s raw item score (x) falling

above a given category threshold as shown in Figure 2. (In fact, the βxi in Equation

(2) are often referred to as threshold parameters.) The order of category threshold

should be kept within each item. In partial credit scoring, however, the focus is on

the relative difficulty of each step needed to transition from one category to the next

in an item. (Therefore, the βi−τki in Equation (1) are commonly referred to as step

parameters.)
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Figure 3: Category response curves for the example item under the GPCM: α = 1,
β = 0, τ1 = 1.5, τ2 = 0, τ3 = 1, and τ4 = −2.5
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Within an item, some steps (category intersection) may be relatively easier or

more difficult than others. So, the property of ordered location parameters is not

indispensable. An example is illustrated in Figure 3 . There, the step from x = 1 to

x = 2 (step parameter=0) is more difficult to achieve than that from x = 2 to x = 3

(step parameter=-1). The assumed scoring process for the RSM is differentiated

from the PCM and GPCM in that the RSM model restricts such step processes to

be same across all items in a test.

Bolt (2002) provided an illustration that demonstrated the necessity of selecting

polytomous IRT models carefully in DIF analysis. To investigate the implication of

model misspecification at DIF detection of polytomous response data, he conducted

a simulation study to investigate the performances of the LR test under the GRM

(referred to as GRM-LR test). Even though the GPCM and GRM appeared to

provide similar GOF for a given data set, model misspecification had more serious

implications for DIF analysis. When the best model for a given data set was the

GPCM, but the GRM was used for model calibration and DIF detection, the GRM-

LR test suffered from serious Type-I error inflation which would have been controlled

if the correect model, GPCM, were used.

3 Model Selection Methods

It is often not clear to researchers and practitioners which one of polytomous

IRT models provides the best description of the underlying item response process

for a given set of data (Bolt, 2002). Therefore, techniques for distinguishing between

these models are seemingly important, as is research on the benefits of choosing the

best model and the problems with using a poor model.

Spiegelhalter et al. (2002) developed an index, DIC, to deal with Bayesian
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posterior estimates of model parameters. DIC is composed of a Bayesian measure

of fit or ‘adequacy’ called the posterior mean deviance D̄ and a penalty for model

complexity, pD, the number of free parameters in the model.

DIC(Model) = D(θ) + pD = D ¯(θ) + 2 × pD, (4)

where D(θ), the posterior mean of the deviance, is a Bayesian measure of fit, D ¯(θ)

is the deviance of the posterior model (i.e., the deviance at the posterior estimates

of the parameters of interest), and pD = D(θ)−D ¯(θ). The model with the smallest

DIC is selected as the model that would best predict a replicate dataset of the same

structure as that currently observed.

A common Bayesian approach to comparing two models, Model A and Model

B, is to compute the ratio of the posterior odds of Model A to Model B divided by

the prior odds of Model A to Model B. Bayes factor (BF) is the ratio of marginal

likelihoods for the two models:

BF =
posterior odds

prior odds
=

P (data|ModelA)

P (data|ModelB)
. (5)

A BF greater than 1.0 supports selection of Model A and a value less than 1.0

supports selection of Model B. It is known that Schwarz (1978) suggested BIC as

an approximation to BF. According to Ghosh and Samanta (2001), Raftery (1995),

and Western (1999), the difference between two BICs, BICModelA − BICModelB, is

a fairly accurate approximation of −2 × log (BF ), provided one of two models is a

saturated model that fits the data perfectly.

The fact that the use of BF is only appropriate if it can be assumed that one of

the models being compared is the true model (Smith, 1991) is a critical limitation

on the common use for model selection. A less stringent assumption is that the

two models are actually proxies for a true model. In this case, cross-validation log-
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likelihoods (CVLL) can often be used to compute a PsBF to help determine which

model to select (Spiegelhalter et al., 1996).

Below, it is explained how to calculate the CVLL in the IRT context. First, two

samples are drawn, a calibration sample, Ycal in which the examinees are randomly

sampled from the whole data, and a cross-validation sample, Ycv, in which a second

sample is randomly drawn from the remaining examinees. The calibration sample

is used to update prior distributions of model parameters to posterior distributions.

According to Bolt et al. (2003), the likelihood of the Ycv for a model is then

computed using the updated posterior distribution as a prior:

P (Ycv|Model) =

∫
P (Ycv|θ,Ycal,Model)fθ(θ|Ycal,Model)dθ, (6)

where P (Ycv|θ,Ycal,Model) represents the conditional likelihood, and fθ(θ|Ycal,Model)

the conditional posterior distribution. An estimate of CVLL for a model is obtained

as the logarithm of P (Ycv|Model) in Equation (6).

The relationship between PsBF and CVLLs can be written as Equation (7),

when Model A and Model B are being compared.

PsBF = exp(CV LLA − CV LLB). (7)

The preferred model can naturally be determined through a direct comparison of

individual CVLLs. When more than two models are compared together, the deci-

sion rule is that the model with the largest CVLL is the best (Spiegelhalter et al.,

1996; Bolt et al., 2001). Estimates of CVLLs will be obtained using the MATLAB

software. (An example of the MATLAB program used for this calculation is given

in Appendix B).

Information-based indices are popular in many research areas because they strike

a balance between the improvement in model fit by heavily parameterized model and
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the elegance and predictability of a more parsimonious model (De Boeck, Wilson,

& Acton, 2005). According to Sober (2002), Akaike’s framework made us see the

model selection problem in terms of the goal of predictive accuracy. Therefore, it

came to be possible to pursue the best model under parsimony consideration based

on observable evidences.

The AIC has two components representing GOF and complexity, respectively.

The first component is the deviance (d) which is calculated with posterior means

of item and ability parameters which are obtained by Gibbs sampler using the

program WinBUGS 1.4 (Spigelhalter, Thomas, Best, & Lunn, 2003). And, the

second component is 2 × p where p is the number of estimated parameters, which

can be interpreted as a penalty function for over-parameterization. This penalty is

designed to correct for overfitting. The AIC is defined as:

AIC(Model) = d + 2p. (8)

The model with the smallest AIC is the one to be selected. If a simple and a complex

model fit a data set equally well, the simpler model will have the smaller AIC

(Hitchcock & Sober, 2004). A criticism of the AIC is that it is not asymptotically

consistent since sample size is not directly involved in its calculation (Ostini &

Nering, 2005; Schwarz, 1978; Sclove, 1987). The AIC tends to prefer saturated

models in very large samples (Janssen & De Boeck, 1999).

An alternate criterion similar to the AIC is the BIC. Schwarz (1978) developed

the model selection measure, BIC, based on a Bayesian argument. The BIC achieves

asymptotic consistency by penalizing over-parameterization with the use of a loga-

rithmic function of the sample size. The BIC criterion is defined as

BIC(Model) = d + p · (logN), (9)

where N is the sample size. Whereas AIC multiplies p by a constant 2, p is multiplied
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by a number proportional to N . Therefore, with the BIC, the penalty for increasing

the number of parameters is more severe, particularly for data sets with large N .

Not surprisingly, BIC tends to favor simper models relative to the AIC, when the

sample size is large. As Lin & Dayton (1997) and Lubke & Muthén (2005) have

noted, results from these two statistics do not always agree with each other because

they have different penalties on the number of parameters.

4 Study 1: Comparison of Model Selection In-

dices on a Set of NAEP Mathematics Data

Methods for Study 1

There are two parts of this paper. Study 1 presents an example of the use of the

four model selection indices obtained through Markov chain Monte Carlo (MCMC)

algorithms. Study 2 presents a simulation study designed to explore the relative

behavior of these indices on specific sets of data on the RSM, PCM, GPCM, and

GRM.

Real Data. In Study 1, we present an example to illustrate the use of the four

indices. Data for this study were taken from responses of Grade 8 students taking

the 2000 State NAEP mathematics test. The 2000 State NAEP mathematics items

were divided into 13 unique Blocks. Test booklets were developed for the 2000 State

NAEP containing different combinations of three of the 13 Blocks. The design of the

NAEP data collection ensured that each Block was administered to a representative

sample of students within each jurisdiction (Allen et al., 1997). Students were

allowed a total of 45 minutes for completion of all three Blocks.

Data from one of the 13 Blocks were used for this example. The Block had a

total of 9 items, and 5 of those were scored polytomously as 0 (wrong), 1 (partially

13



correct), or 2 (correct). The GPCM was used to model the item response functions

for this type of item (Allen et al., 1997). There were total 13,556 examinees who

had took this Block.

Parameter Estimation. Bayesian parameter estimates were obtained using

Gibbs sampling algorithms as implemented in the computer program WinBUGS.

There is increasing attention to MCMC algorithms these days in IRT (see for exam-

ple Baker, 1998; Bolt, Cohen, & Wollack, 2001; Kim, 2001; Patz & Junker, 1999a,

1999b, Wollack, Bolt, Cohen & Lee, 2002). In MCMC estimation, a Markov chain

is simulated in which values representing parameters of the model are repeatedly

sampled from their full conditional posterior distributions over a large number of

iterations. The estimate is sampled from the posterior after each iteration. The

value taken as the MCMC estimate is the mean over iterations sampled starting

with the first iteration following burn-in. WinBUGS also provides an estimation of

DIC for each set of items calibrated.

To derive the posterior distributions for each parameter, it is first necessary to

specify their prior distributions. When there are 3 categories for each item, the

following priors were used in this study. For the GPCM, θj ∼ normal (0, 1), (j =

1, . . . , N), ai ∼ lognormal (0, 1), (i = 1, . . . , T ), bk ∼ normal(0, 1), (i = 1, . . . , T ),

τ1i ∼ normal (0, .1), (i = 1, . . . , T ), where N is the total number of examinees,

T is the total number of items, a represents the discrimination parameter, b is the

difficulty parameter, and τ1 indicates the location of category 1 relative to the item’s

difficulty. For items with 3 categories (which are scored for NAEP as x = 0, 1, 2),

the following constraints were used:
∑m

k=0 τki = 0, and τ2i = −τ1i since τ0i = 0 in

Equation (1). For the GRM, the following priors were used: θj ∼ normal (0, 1), (j =

1, . . . , N), ai ∼ lognormal (0, 1), (i = 1, . . . , T ), b1i ∼ normal (0, .1), (i = 1, . . . , T ),
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b2i ∼ normal (0, .1)I(b1i, ), (i = 1, . . . , T ), where the notation I(b1i, ) indicates that

b2i is always sampled to be larger than b1i (An example of the WinBUGS program

used for calibration of the GRM is given in Appendix A).

Determination of a suitable burn-in was based on results from a chain run for a

length of 11,000 iterations. The computer program WinBUGS (Spiegelhalter et al.,

2003) provides several indices which can be used to determine an appropriate length

for the burn-in. A previous study (Kang, Cohen & Sung, 2005) suggested that burn-

in lengths of less than 100 iterations would be reasonable for any polytomous IRT

model. A conservative estimate of 1,000 iterations for the burn-in was used in this

study. For each chain, therefore, at least an additional 10,000 iterations was run

subsequent to the burn-in iterations. Estimates of model parameters were based on

the means of the sampled values from iterations following burn-in.

Results for Study 1

From the 2000 state NAEP mathematics test data, 3,000 examinees were ran-

domly sampled for the calibration sample. Then, values for each of the four model

selection indices were calculated. Also, to obtain the CVLL estimates, another 3,000

examinees were sampled from the same Block. Model selection results are reported

in Table 1.

Table 1: Comparisons of model selection methods (2000 state NAEP math data: 5
polytomous items from Block 15)

Model Selection Methods
Model DIC CVLL AIC BIC
RSM 26005 -11950 24003 24039
PCM 23376 -10625 21424 21484
GPCM 22754 -10393 20894 20984
GRM 22774 -10292 20716 20806
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The calibration sample consisted of 1,466 male and 1,534 female examinees. The

minimum and maximum scores of the five polytomous item test were 0 and 10; the

average score over all five items was 3.77 and the SD was 2.29.

With all the indices, the PCM and the RSM were ranked as the 3rd and 4th,

respectively. There exist, however, some inconsistent results in terms of which is

the best. The DIC for GPCM was the smallest, which means it chose the GPCM as

the best model. The CVLL was the largest for GRM, and both the AIC and BIC

had the smallest value for GRM. Therefore, these three indices selected the GRM

as the best model. Given the lack of consistency, it is confusing to know which of

these indices to apply in a practical testing situation.

5 Study 2: Simulation Study Comparing Model

Selection Indices

In Study 2, we explore the behavior of these four indices further, using simulated

data with known generating models and parameters. Here, data were generated with

different IRT models under a variety of conditions. In this way, we hope to be able to

better understand how the model selection indices might be used for model selection

for conditions encountered in practical testing situations.

Methods for Study 2

Simulation Design. In Study 2, the design of the simulation study includes

four polytomous IRT models described above (RSM, PCM, GPCM, and GRM), two

test lengths (n = 10 or 20), two sample sizes (N = 500 or 1, 000), and two numbers

of categories per item (NC = 3 or 5). The two test lengths are used to simulate

tests having moderate and large numbers of polytomously scored items. The two

sample sizes represent moderate and large samples. Discrimination parameters for

the GPCM and GRM were randomly sampled from a lognormal(0, .5) distribution.
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For five category items, item category parameters are randomly drawn from normal

distributions with standard deviation of 1 and means of -1.5, -0.5, 0.5 and 1.5. After

sampling, the difficulties were adjusted to meet the assumptions of each polytomous

model. Threshold parameters for the boundary curves of the GRM must be ordered,

so adjustments needed to be made when the randomly sampled thresholds did not

result in ordered generating parameters. In such cases, the adjacent parameters

were simply switched. For the GPCM, the mean of the item category generating

parameters (b1i,..., b4i) was used as the item difficulty parameter (bi) and the differ-

ence between bi and the bkis were taken as the step parameters, τkis. θ values were

randomly drawn from a normal (0, 1) distribution.

For items with three categories, the location generating parameters were obtained

as the mean of two adjacent generating parameters for the respective five category

items. That is, the mean of b1i and b2i and the mean of b3i and b4i were taken as

the new b1i and b2i, respectively, for items with three categories.

Table 2: Generating Item Parameters (NC=5)

GRM GPCM
Item a b1 b2 b3 b4 a b τ1 τ2 τ3
1 1.19 -1.59 -0.83 1.25 2.28 1.16 -0.42 2.56 -0.04 -1.67
2 0.96 -2.35 -0.29 0.60 1.84 0.51 -0.24 0.88 0.45 -1.67
3 1.52 -0.67 -0.06 1.28 2.39 1.43 0.61 3.05 -0.10 -0.95
4 2.48 -1.20 -0.04 1.22 2.42 2.25 -0.37 -0.41 1.88 0.00
5 0.58 -1.84 -1.13 -0.17 0.62 0.71 0.16 2.35 0.11 -0.67
6 1.13 -3.68 -2.23 -0.30 1.48 1.54 0.60 1.45 0.08 -0.26
7 1.63 -0.58 1.06 1.81 2.62 1.87 0.11 1.27 -0.24 0.50
8 0.82 -3.83 -0.98 0.49 1.12 0.45 -0.40 1.90 -0.60 -0.28
9 1.97 -3.51 -1.26 0.13 0.79 0.49 -0.38 3.17 -0.04 -2.08
10 1.21 -2.51 -1.65 0.72 1.62 1.33 0.15 1.59 -0.15 -0.34
11 1.10 -2.15 -1.40 0.59 1.48 0.82 -0.19 2.20 -0.38 -1.20
12 0.80 0.21 1.14 2.04 2.81 1.41 -0.03 0.73 0.60 -0.74
13 2.02 -3.07 -1.13 0.33 1.52 1.50 0.36 1.23 1.12 0.38
14 1.85 -0.64 0.22 1.00 1.83 1.43 0.35 0.03 1.02 0.28
15 1.48 -1.97 -0.03 0.96 2.41 1.91 -0.29 0.49 1.56 -1.36
16 1.40 -2.64 -1.30 -0.33 0.63 1.40 -0.34 1.68 0.27 -0.02
17 2.47 -2.09 -0.94 1.42 2.40 1.81 0.16 1.16 0.42 -1.24
18 0.93 -1.91 -0.79 0.44 1.26 0.55 -0.25 2.14 -0.18 -1.44
19 1.24 -1.61 -0.66 1.66 2.85 0.99 0.21 1.60 -0.86 0.41
20 1.65 -2.05 -0.16 0.67 1.96 0.92 0.19 1.62 0.92 -0.16
Mean 1.42 -1.98 -0.62 0.79 1.81 1.22 0.00 1.53 0.29 -0.63
SD 0.53 1.07 0.86 0.68 0.70 0.53 0.33 0.92 0.71 0.79
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Table 3: Generating Item Parameters (NC=3)

GRM GPCM
Item a b1 b2 a b τ1

1 1.19 -1.21 1.77 1.16 -0.42 1.26
2 0.96 -1.32 1.22 0.51 -0.24 0.66
3 1.52 -0.36 1.84 1.43 0.61 1.47
4 2.48 -0.62 1.82 2.25 -0.37 0.74
5 0.58 -1.49 0.22 0.71 0.16 1.23
6 1.13 -2.96 0.59 1.54 0.60 0.76
7 1.63 0.24 2.21 1.87 0.11 0.52
8 0.82 -2.41 0.81 0.45 -0.40 0.65
9 1.97 -2.38 0.46 0.49 -0.38 1.57
10 1.21 -2.08 1.17 1.33 0.15 0.72
11 1.10 -1.78 1.04 0.82 -0.19 0.91
12 0.80 0.68 2.43 1.41 -0.03 0.67
13 2.02 -2.10 0.93 1.50 0.36 1.18
14 1.85 -0.21 1.42 1.43 0.35 0.52
15 1.48 -1.00 1.69 1.91 -0.29 1.03
16 1.40 -1.97 0.15 1.40 -0.34 0.97
17 2.47 -1.51 1.91 1.81 0.16 0.79
18 0.93 -1.35 0.85 0.55 -0.25 0.98
19 1.24 -1.14 2.25 0.99 0.21 0.37
20 1.65 -1.10 1.31 0.92 0.19 1.27
Mean 1.42 -1.30 1.30 1.22 0.00 0.91
SD 0.53 0.92 0.68 0.53 0.33 0.33

Tables 2 and 3 show the item parameters used for data generation. At the left

side of the table are the generating parameters for the GRM and at the right side are

the generating parameters for the GPCM. To generate a data set for the PCM, only

the b and τ parameters from the right side of the table were used, and a parameters

were fixed at 1. To generate a data set for the RSM, the τs of Item 1 were used

for all items on the test. The first 10 item parameters were used for generating the

10-item tests, and all 20 items were used for generating the 20-item tests.

There were a total of 32 different conditions simulated in this study (4 generating

models × 2 test lengths × 2 sample sizes × 2 category lengths). Ten replications will

be generated for each condition. For the each generated data set, parameters for the

same four polytomous models were estimated using MCMC techniques. To evaluate

the performance of the four model selection indices, the indices were compared with

respect to the proportions of times each index selected the correct model. A good
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model selection index ought to be able to identify the generating model as the best

model with a high percentage.

Results for Study 2

Recovery of Item Parameters. Since the model-selection indices in this study

were calculated based on estimated model parameters, we first checked the quality

of recovery of the item parameter estimation by MCMC. Parameter recovery was

evaluated using product moment correlations (r) between the generating and the

estimated parameters. The recovery results for all parameters in the four polytomous

IRT models were very good (r ≥ .89). The recovery results for the GPCM and GRM

are reported in Table 4.

Table 4: Correlation Between Estimated and Generating Item Parameters

GPCM by MCMC GRM by MCMC
test sample # of
length size categ. a b τ1 τ2 τ3 a b1 b2 b3 b4
n=10 500 NC=3 0.97 0.98 0.89 0.95 0.97 0.97

NC=5 0.98 0.99 0.98 0.95 0.97 0.97 0.95 0.99 0.99 0.96
1000 NC=3 0.98 0.97 0.94 0.98 0.99 0.99

NC=5 0.99 0.99 0.99 0.97 0.98 0.98 0.98 0.99 0.99 0.98
n=20 500 NC=3 0.97 0.96 0.93 0.96 0.98 0.97

NC=5 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.99 0.98 0.97
1000 NC=3 0.99 0.99 0.96 0.98 0.99 0.99

NC=5 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.98

Model Selection. The frequencies of model selections for the four different

indices (DIC, CVLL, AIC and BIC) are shown in Figures 4, 5, and 6. In these plots,

the main effects of three factors in Study 2 (test length, sample size, and number of

categories) were illustrated, respectively.

In Figure 4, the model selection frequencies are plotted for different test lengths

(n = 10, and n = 20). Because the frequencies were calculated marginally, the

total 40 data sets (10 data sets × 2 sample sizes × 2 number of categories) were

considered in each plot. When the true model was GPCM, PCM, or RSM, the
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four indices performed well in selecting the correct model. A clear improvement in

correct model selection was evident for the longer test (n = 20). Regardless of test

length, when the true model was GRM, the GPCM tended to be selected as the

best in roughly a third of the data sets.

Figure 5 shows the model selection frequencies plotted by sample size (N = 500

and N = 1, 000). When the true model was the GRM, the performance of DIC

appeared to be better for the larger sample size: when N = 500, DIC selected

the GPCM as the better model about 2/3 of the time, and when N = 1, 000,

DIC performed better, selecting the correct model, GRM, with approximately 93%

(= 37/40) accuracy. When the true model was one of GPCM, PCM, and RSM, the

four indices performed well irrespective of sample size.

In Figure 6, the performance of the model selection indices looked sensitive to

the number of categories. When a test has five-category items, the DIC, CVLL,

AIC, and BIC selected the true GRM with 68%, 80%, 95%, and 95% accuracy,

respectively, compared to each 55%, 70%, 63%, and 63% accuracy for three-category

item tests. When the true model was the GPCM or RSM, all four indices worked

almost perfectly in finding the correct model in the conditions with five-category

items. The performance of CVLL showed a slight improvement in finding the true

PCM as the number of categories was larger.

Table 5 shows the frequency that each index selected each model in each condi-

tion of Study 2. For example, for the 10 replications in the 20-item, N = 1000, and

the number of categories=5 condition which were generated with the RSM (see the

very bottom row of Table 5), the DIC index selected the GRM 0 times, the GPCM 0

times, the PCM 0 times and the RSM 10 times as the best model. In this condition,

in fact, all four of the indices consistently selected the true model, RSM.

From Table 5, it was evident that in the conditions with large sample size
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Figure 4: Model Selection Frequencies by Test Length
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Figure 5: Model Selection Frequencies by Sample Size
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Figure 6: Model Selection Frequencies by Number of Categories
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Table 5: Model Selection Frequencies

Selected by
test samp. # of true* DIC CVLL AIC BIC
leng. size categ. model GR GP P R GR GP P R GR GP P R GR GP P R

n=10 500 NC=3 GR 3 7 0 0 9 1 0 0 7 3 0 0 7 3 0 0
GP 0 10 0 0 0 10 0 0 4 6 0 0 4 6 0 0
P 0 1 9 0 0 1 9 0 0 2 8 0 0 0 10 0
R 0 3 0 7 0 1 1 8 1 3 0 6 0 0 0 10

NC=5 GR 2 8 0 0 2 8 0 0 8 2 0 0 8 2 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 3 7 0 0 1 9 0 0 3 7 0 0 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

1000 NC=3 GR 8 2 0 0 8 2 0 0 8 2 0 0 8 2 0 0
GP 0 10 0 0 4 6 0 0 2 8 0 0 2 8 0 0
P 0 2 8 0 0 2 8 0 0 3 7 0 0 0 10 0
R 0 0 0 10 0 2 1 7 1 2 1 6 0 0 0 10

NC=5 GR 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 0 10 0 0 0 10 0 0 1 9 0 0 0 10 0
R 0 0 0 10 0 0 0 10 0 1 0 9 0 0 0 10

n=20 500 NC=3 GR 2 8 0 0 7 3 0 0 5 5 0 0 5 5 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0
R 0 0 0 10 0 0 1 10 0 0 0 10 0 0 0 10

NC=5 GR 5 5 0 0 10 0 0 0 10 0 0 0 10 0 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

1000 NC=3 GR 9 1 0 0 4 6 0 0 5 5 0 0 5 5 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 0 10 0 0 2 8 0 0 0 10 0 0 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

NC=5 GR 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0
GP 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0
P 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0
R 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

* GR=GRM, GP=GPCM, P=PCM, and R=RSM

(N=1,000) and 5 categories for each item, all four indices appeared to select the

correct model almost perfectly. If the true model was one of the three nested mod-

els (RSM, PCM, and GPCM), all indices worked very well, especially when the test

length is long (n=20). If the GRM was the correct model, however, CVLL, AIC,

and BIC showed good performances only when the number of categories of items

was 5. DIC, on the other hand, provided poor model choices for short test length

(n=10) and small sample size (N=500).

Generally speaking, all four indices worked very well in almost all conditions

at answering the correct model provided the data were generated with the RSM,

PCM, and GPCM, but that indices often struggle to distinguish between GRM and

GPCM when the data were generated with the GRM.

The simulated condition which was most similar to the real data from Study 1
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was the n=10, N=1000, NC=3 condition. In Study 1, DIC had chosen the GPCM

and the other indices had selected the GRM as the best model. If the true model

for the NAEP data was the GRM which is of course unknowable, the simulation

suggests that all four indices had a probability of 80% of selecting the correct model,

GRM, according to Table 5. Also, if the true model for the data was the GPCM,

the probabilities for choosing the generating model, GPCM, were 100%, 60%, 80%,

and 80% for the DIC, CVLL, AIC, and BIC, respectively.

6 Discussion & Conclusions

There is no model that can perfectly describe a given set of data, because

neither a theory nor a model can be a perfect mirror of reality (Wainer & Thissen,

1987). All we can do is faithful attempt to find the best model providing a sound

connection between theoretical ideas and observed data (Navarro & Myung, 2005).

Most studies of model-fit in IRT tend to focus on only GOF and item-model fit

issues (e.g. Orlando & Thissen 2000, 2003; Glas & Suarez-Falcon, 2003). In terms

of model selection considering the whole data at the same time, Forster (2004)

named such approaches considering only model fitting as “näıve empiricism”. And

he warned that it would be problematic because it tends to indicate that the more

complex model will be the better model, at least when the models are nested. This

approach orients itself towards finding a model that fits the data perfectly. By doing

so, the noise (idiosyncratic information) in the data will be fitted at the expense

of the signal (structural information) behind the noise. Such “data dredging” may

lead researchers to the discovery of spurious effects (Burnham & Anderson, 2002).

This is why overfitting is undesirable. When we consider both GOF and model

complexity, however, we can select a model with the best prediction accuracy. This

25



study was intended to help select a model among the four popular polytomous IRT

models while keeping the principle of parsimony.

Deciding a model that generated a given data set is very difficult since the true

model is not known for real data. In addition, data usually have random noise

caused by sampling error, imprecise measurement instrument, or mistakes in data

collection procedure. To make matters worse, it is always possible that more than

one model could have generated the data sample. So then, what we have to do will

be “to use all of the information available to make a best guess as to which model

most likely generated the data (p. 351)” (Myung & Pitt, 2004). In this paper, it

was assumed that there exists a generating or true model in the set of candidate

models. However, what if there is no true model among them? When a researcher

or a practitioner needs to find an appropriate model for his or her data set, the best

he or she can do is to collect all available models with all the knowledge, experience,

and help from other experts. Actually, this paper is intended to work in the situation

where several competing models are already available through such process. From

a divine point of view, however, what if there still could be a true model out of

the candidate set? Then, maybe, it would be beyond the province of human beings

with limited ability. What we can do is to try in earnest to select the best model

among given models. Therefore, the criterion of best model should be how much

the predictive accuracy can be obtained with a model, rather than whether or not a

model is true (Forster, 1999; Hitchcock & Sober, 2004; Sober, 2002).

Maydeu-Olivares, Drasgow, and Mead (1994) used the ideal observer index (IOI)

to compare the GPCM and GRM and concluded that either model would be equally

appropriate in most practical applications. In terms of IRT model selection, two

questions need to be answered related to their study. The first question is if it is

really no use trying to choose one of the GPCM and GRM. Their conclusion is based
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on the way they calculated the IOI. If the IOI following their way did not have enough

power to distinguish two models, however, could we just believe their assertion that

the two models would show same performances in most cases? Actually, Akkermans

(1998) calculated the IOI in a different way and showed that it was possible to make

the IOI much more powerful in finding the difference between the GPCM and GRM.

It suggests the possibility that the two models may work differently. The other

quesiton is if the IOI can be used for the purpose of model selection. As Ostini and

Nering (2005) indicated, the computation of the IOI is not straightforward because

it cab be estimated only with simulation data. Accordingly, although the IOI may

be used to answer if any two statistical models perform differently, it cannot be a

practical method for selecting an appropriate model for empirical data. So, the IOI

was not considered in this paper.

As can be seen from the results of this study, inconsistencies and inaccuracies

were found in model selection among the different indices in some of the simulated

conditions. Some indices appeared to function better under some of the conditions

than under others and for some models than for others. In general, it appears that

for comparisons between the GRM and GPCM, the four indices were useful, when

the true model was the GPCM. When the true model was the GRM, however, the

performances of model selection indices were less accurate. Two interpretation will

be possible for this phenomenon. One is the indices are just less powerful to find

the true GRM. The other is that the GPCM is more flexible model than the GRM

in spite of the use of the same number of parameters in modeling. In the study

of Bolt (2002), when data sets were generated with the GPCM but the GRM-LR

test was used for DIF detection, it was reported that there was a serious Type-I

error inflation problem. But, Bolt did not deal with the opposite case where the the

true model would be the GRM and the LR test could be done using GPCM. If the
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second interpretation above is correct, we may be able to expect that less Type-I

error inflation would happen in this approach. Further study seems warranted to

make an investigation into this.

It is true that non-statistical issues in a model selection process are never trivial

(as some models may be more appropriate for one type of psychological process

than another or for one test purpose than another). Van der Ark (2001), actually,

suggested to consider measurement properties of each competing polytomous IRT

model in choice of an appropriate model. But, this study was intended to examine

IRT model selection issue from a statistical perspective. All of the four model

selection indices here were based on Bayesian item and ability calibrations. The

results of studies such as this study may often be able to help inform a decision

for selecting one model over another. However, additional study is necessary to

enable a simulation study of this sort to provide practical guidance for researchers

and practitioners. First of all, the simulating conditions in this study were too

limited. Many more replications per condition (e.g. 50 or 100) need to be considered

to produce more reliable and generalizable results. Also, there is no reason our

interest is restricted within only the four models in this paper. Other IRT models for

polytomous data such as sequential response model (Mellenbergh, 1995; Tutz, 1990)

and unfolding model (Roberts & Laughlin, 1996) can be surely considered further

on. In addition, more complicated IRT models dealing with multidimensionality

may be investigated in terms of model selection.
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Appendix A: WinBUGS Code Used for GRM Calibration.

grm.odc

------------------------------------------------------------------------

# Graded Response Model

model {

for (j in 1:N) {

for (i in 1:T) {

r[j,i]<-resp[j,i]

}}

# GRM

for (j in 1:N) {

for (i in 1:T) {

for (k in 1: (mI[i]-1)) {

p[j,i,k] <- 1 / (1+exp(-a[i]*(theta[j]-b[i,k])));

}}}

for (j in 1:N) {

for (i in 1:T) {

pcat[j,i,1] <- 1-p[j,i,1];

for (k in 2: (mI[i]-1)) {

pcat[j,i,k] <- p[j,i,k-1]-p[j,i,k];

}

pcat[j,i,mI[i]] <- p[j,i,(mI[i]-1)];

}}

for (j in 1:N) {

for (i in 1:T) {

for (k in 1:mI[i]) {

pc[j,i,k] <- pcat[j,i,k] / sum( pcat[j,i, 1:mI[i]] ) ;

}

r[j,i] ~ dcat(pc[j,i,1:mI[i]]);

}

theta[j] ~ dnorm(mu,1);

}

mu ~ dnorm(0,1);

# Priors

for (i in 1:T) {

a[i] ~ dlnorm(0, 1.);

b[i,1] ~ dnorm(0,.1);

for (k in 2: (mI[i]-1)) {

b[i,k] ~ dnorm(0, .1) I(b[i,k-1], );

}

}

}

------------------------------------------------------------------------

# The WinBUGS codes for calibration of other models can be

obtained from the authors
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Appendix B: MATLAB Code used to calculating CVLLs for 4 polytomous IRT models

cvlog.m

------------------------------------------------------------------------

% information from posterior distributions of real data

N=3000; n=5;

load estrsm.txt; % estimated item parameters by RSM

load estpcm.txt; % estimated item parameters by PCM

load estgpcm.txt; % estimated item parameters by GPCM

load estgrm.txt; % estimated item parameters by GRM

% CV dataset

load cv3000.dat; cvloglik=zeros(1,4);

% CV log-likelihood of RSM

a=ones(n,1); b=estrsm(:,1); tau1=estrsm(:,2); tau2= -tau1;

cv=zeros(N,1); for j=1:N

resp=zeros(1,n);

resp=cv3000(j,:);

ind_cv_gpcm

cv(j)=cvj;

end cvloglik(1,1)=sum(cv);

% CV log-likelihood of PCM

a=ones(n,1); b=estpcm(:,1); tau1=estpcm(:,2); tau2= -tau1;

cv=zeros(N,1); for j=1:N

resp=zeros(1,n);

resp=cv3000(j,:);

ind_cv_gpcm

cv(j)=cvj;

end cvloglik(1,2)=sum(cv);

% CV log-likelihood of GPCM

a=estgpcm(:,1); b=estgpcm(:,2); tau1=estgpcm(:,3); tau2= -tau1;

cv=zeros(N,1); for j=1:N

resp=zeros(1,n);

resp=cv3000(j,:);

ind_cv_gpcm

cv(j)=cvj;

end cvloglik(1,3)=sum(cv);

% CV log-likelihood of GRM

a=estgrm(:,1); b1=estgrm(:,2); b2=estgrm(:,3); cv=zeros(N,1); for

j=1:N

resp=zeros(1,n);

resp=cv3000(j,:);

ind_cv_grm

cv(j)=cvj;

end cvloglik(1,4)=sum(cv);

% PsBF

cvloglik

------------------------------------------------------------------------

ind_cv_gpcm.m

------------------------------------------------------------------------

% 41 quadrature points between -4 to 4

k=-4:.2:4; K=length(k); prob=zeros(1,K); L=zeros(1,K);

% to calculate likelihood at each node

pofc=zeros(K,n,3); tt=zeros(K,n,3); denom=zeros(K,n); for t=1:K

for i=1:n

tt(t,i,1) = 1;

tt(t,i,2) = exp(a(i)*(k(t)-b(i)-tau1(i)));

tt(t,i,3) = exp(a(i)*(k(t)-b(i)-tau1(i) + k(t)-b(i)-tau2(i)));

denom(t,i) = 1 + tt(t,i,2) + tt(t,i,3);
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end

end for t=1:K

for i=1:n

for w=1:3

pofc(t,i,w)=tt(t,i,w)/denom(t,i);

end

end

end

for t=1:K

lik=1;

for i=1:n

if resp(i)==1

lik=lik*pofc(t,i,1);

elseif resp(i)==2

lik=lik*pofc(t,i,2);

else

lik=lik*pofc(t,i,3);

end

end

L(t)=lik;

end

% to cmpute a posterior probability of ability

for t=1:K

prob(t)=L(t)*normpdf(k(t),0,1);

end

prob=prob/sum(prob);

% to get CV log likelihood

cvj=0; for t=1:K

cvj=cvj+prob(t)*log(L(t));

end

------------------------------------------------------------------------

ind_cv_grm.m

------------------------------------------------------------------------

% 21 quadrature points between -4 to 4

k=-4:.4:4; K=length(k); prob=zeros(1,K); L=zeros(1,K);

% to calculate likelihood at each node

pofc=zeros(K,n,3); tt=zeros(K,n,2); for t=1:K

for i=1:n

tt(t,i,1) = 1/(1 + exp(-a(i)*(k(t) - b1(i) )));

tt(t,i,2) = 1/(1 + exp(-a(i)*(k(t) - b2(i) )));

pofc(t,i,1) = 1 - tt(t,i,1);

pofc(t,i,2) = tt(t,i,1) - tt(t,i,2);

pofc(t,i,3) = tt(t,i,2);

end

end

for t=1:K

lik=1;

for i=1:n

if resp(i)==1

lik=lik*pofc(t,i,1);

elseif resp(i)==2

lik=lik*pofc(t,i,2);

else

lik=lik*pofc(t,i,3);

end

end

L(t)=lik;
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end

% to cmpute a posterior probability of ability

for t=1:K

prob(t)=L(t)*normpdf(k(t),0,1);

end

prob=prob/sum(prob);

% to get CV log likelihood

cvj=0; for t=1:K

cvj=cvj+prob(t)*log(L(t));

end

------------------------------------------------------------------------
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